Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730821

RESUMO

The aim of this study is to analyze the effect of the addition of TiO2 nanoparticles (NTs) on the physical and mechanical properties, as well as the microstructural changes, of cementitious composites containing partially substituted natural aggregates (NAs) with aggregates derived from the following four recycled materials: glass (RGA), brick (RGB), blast-furnace slag (GBA), and recycled textolite waste with WEEE (waste from electrical and electronic equipment) as the primary source (RTA), in line with sustainable construction practices. The research methodology included the following phases: selection and characterization of raw materials, formulation design, experimental preparation and testing of specimens using standardized methods specific to cementitious composite mortars (including determination of apparent density in the hardened state, mechanical strength in compression, flexure, and abrasion, and water absorption by capillarity), and structural analysis using specialized techniques (scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS)). The analysis and interpretation of the results focused primarily on identifying the effects of NT addition on the composites. Results show a decrease in density resulting from replacing NAs with recycled aggregates, particularly in the case of RGB and RTA. Conversely, the introduction of TiO2 nanoparticles resulted in a slight increase in density, ranging from 0.2% for RTA to 7.4% for samples containing NAs. Additionally, the introduction of TiO2 contributes to improved compressive strength, especially in samples containing RTA, while flexural strength benefits from a 3-4% TiO2 addition in all composites. The compressive strength ranged from 35.19 to 70.13 N/mm2, while the flexural strength ranged from 8.4 to 10.47 N/mm2. The abrasion loss varied between 2.4% and 5.71%, and the water absorption coefficient varied between 0.03 and 0.37 kg/m2m0.5, the variations being influenced by both the nature of the aggregates and the amount of NTs added. Scanning electron microscopy (SEM) images and energy dispersive X-ray spectroscopy (EDS) analysis showed that TiO2 nanoparticles are uniformly distributed in the cementitious composites, mainly forming CSH gel. TiO2 nanoparticles act as nucleating agents during early hydration, as confirmed by EDS spectra after curing.

2.
Materials (Basel) ; 17(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276424

RESUMO

In light of the urgent need to develop environmentally friendly materials that, at some point, will allow the reduction of concrete and, consequently, cement consumption-while at the same time allowing the reuse of waste and industrial by-products-alkali-activated fly ash (AAFA) geopolymer composite emerges as a material of great interest. The aim of this study was to investigate the physico-mechanical performance of composites based on AAFA binders and the effect of different types of aggregates on these properties. The experimental results indicate variations in flexural and compressive strength, which are influenced both by the nature and particle size distribution of aggregates and the binder-to-aggregate ratio. The analysis of the samples highlighted changes in porosity, both in distribution and pore size, depending on the nature of the aggregates. This supports the evolution of physico-mechanical performance indicators.

3.
Cells ; 11(24)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552883

RESUMO

BACKGROUND: Bacterial biofilm formation (BBF) proves itself to be in the spotlight of microbiology research due to the wide variety of infections that it can be associated with, the involvement in food spoilage, industrial biofouling and perhaps sewage treatment. However, BBF remains difficult to study due to the lack of standardization of the existing methods and the expensive equipment needed. We aim to describe a new inexpensive and easy to reproduce protocol for a 3D-printed microfluidic device that can be used to study BBF in a dynamic manner. METHODS: We used the SolidWorks 3D CAD Software (EducationEdition 2019-2020, Dassault Systèmes, Vélizy-Villacoublay, France) to design the device and the Creality3D Ender 5 printer (Shenzhen Creality 3D Technology Co., Ltd., Shenzhen, China) for its manufacture. We cultivated strains of Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa. For the biofilm evaluation we used optical coherence tomography (OCT), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and crystal violet staining technique. RESULTS: Based on the analysis, Enterococcus faecalis seems to produce more biofilm in the first hours while Pseudomonas aeruginosa started to take the lead on biofilm production after 24 h. CONCLUSIONS: With an estimated cost around €0.1285 for one microfluidic device, a relatively inexpensive and easy alternative for the study of BBF was developed.


Assuntos
Bactérias , Infecções Estafilocócicas , Humanos , Biofilmes , Staphylococcus aureus , Microscopia Eletrônica de Varredura
4.
Micromachines (Basel) ; 13(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36144000

RESUMO

A realistic modelling of the way biofilms form and evolve in time requests a dynamic approach. In this study, the proposed route uses continuous-flow bioreactors under controlled flow rates and temperature in the culture medium containing bacteria or fungi. 3D printed, Polylactic acid (PLA), flow-based bioreactors with integrated copper electrodes were used to investigate the effect of dielectrophoresis on the formation and growth of Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, Pseudomonas aeruginosa ATCC 27853, and Klebsiella pneumoniae ATCC 13883 biofilms. Bacterial suspensions of 1McF turbidity have been prepared and circulated through the bioreactors. At the same time, a 30 V potential difference was applied on the system. The effect of the non-uniform electric field induced upon the bacterial cells was determined using quantitative methods, such as an adjusted microtiter plate technique, as well as spectral domain optical coherence tomography (SD-OCT) images. The morphology and the surface quality of the biofilms were investigated using Scanning Electron Microscopy (SEM) images. The results show that the different bacterial cells present a positive dielectrophoretic behaviour, with the preferential formation of biofilms in the high field gradient region.

5.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955381

RESUMO

This paper presents the usage of spark plasma sintering (SPS) as a method to obtain aluminum-expanded perlite syntactic foams with high porosity. In the test samples, fine aluminum powder with flaky shape particles was used as matrix material and natural, inorganic, granular, expanded perlite was used as a space holder to ensure high porosity (35−57%) and uniform structure. SPS was used to consolidate the specimens. The structures were characterized by scanning electron microscopy and compression tests. Energy absorption (W~7.49 MJ/m3) and energy absorption efficiency (EW < 90%) were also determined.

6.
Gels ; 8(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36005084

RESUMO

Dexamethasone is one of the most often used corticosteroid drugs for sensorineural hearing loss treatment, and is used either by intratympanic injection or through systemic delivery. In this study, a biopolymer lipid hybrid microcarrier was investigated for enhanced local drug delivery and sustained release at the round window membrane level of the middle ear for the treatment of sensorineural hearing loss (SNHL). Dexamethasone-loaded and dexamethasone-free microparticles were prepared using biopolymers (polysaccharide and protein, pectin and bovine serum albumin, respectively) combined with lipid components (phosphatidylcholine and Dimethyldioctadecylammonium bromide) in order to obtain a biopolymer-liposome hybrid system, with a complex structure combining to enhance performance in terms of physical and chemical stability. The structure of the microparticles was evaluated by FTIR, XRD, thermal analysis, optical microscopy, and scanning electron microscopy (SEM). The encapsulation efficiency determination and the in vitro Dexamethasone release study were performed using UV-Vis spectroscopy. The high value of encapsulation efficiency and the results of the release study indicated six days of sustained release, encouraging us to evaluate the in vitro cytotoxicity of Dexamethasone-loaded microparticles and their influence on the cytotoxicity induced by Cisplatin on auditory HEI-OC1 cells. The results show that the new particles are able to protect the inner ear sensory cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...